

XIII School on Synchrotron Radiation: Fundamentals, Methods and Applications

Grado, Italy / 14-25 September 2015

Photoemission Spectroscopy: Fundamental Aspects

G. Stefani Dipartimento di Scienze,Universita' Roma Tre CNISM Unita' di Ricerca di Roma 3

outline

1.Intruduction 2. Energy conservation, binding energy and photoelectron energy **3.Satellite structures and multiplet splitting 4.Chemical shift 5.Molecular photoelectron spectra 6.Photoelectron angular distributions** 7. Hole state relaxation 8. Resonant photoemission 9.Photoemission in solids **10.EDC and core ionization 11.Angular resolved PES**

He Iα=21.23eV He IIα=40.82eV Mg Kα1,2 = 1253,6 eV Al Kα1,2=1486,6eV Synchrotron Radiation

hv

Photoelectron Spectroscopy XIII SILS School G. Stefani

K.

 \mathbf{M}

E

Amp.

E_e

Counter

 $Je(hv, Ee, \theta, \phi, \sigma)$

н

Sample

ENERGY CONSERVATION, BINDING ENERGY AND PHOTOELECTRON ENERGY

X-section vs. Photoemission current

$$J_{e}(h\nu,\vartheta,\phi) = J_{h\nu}(\rho l) \int_{\Delta E \Delta \Omega} \frac{d\sigma}{d\Omega dE} F_{an}(E,\Omega) \eta_{det}(E) d\Omega dE$$

Photoemission peak lineshape

- 1. Photon monochromaticity
- 2. Electron analyzer resolution
- **3.** Final state lifetime (uncertainty principle)

Gaussian Gaussian Lorentian

Lineshape =Convolution (1,2,3)

The photoemission process

Interaction radiation matter

$$\frac{d\sigma}{dh\nu} = 4\pi^2 \alpha h \nu \sum_{B} \left| \hat{\varepsilon} \bullet \left\langle \Psi_{B} \right| \sum_{i} \vec{r}_{i} \left| \Psi_{A} \right\rangle \right|^{2} \delta(E_{B} - E_{A} - h\nu)$$

Bertoni's lecture this school

Initial state A = Neutral ground(excited) state Final state B = Residual ion + free electron(s)

Energy balance for 2e atom

$$E_B = E_A + hv$$

$$\Psi_A = \hat{A}\phi_1\phi_2 \qquad \Psi_B = \hat{A}\phi_1\varepsilon_2$$

$$E_{1s} + E_e = E_{1s} + E_{1s} + hv$$

$$E_e = hv - BE_{1s}(24.6eV)$$

One single photoemission peak is expected Energy and momentum are conserved

Complexity of the photoemission spectrum

The noble gas panorama

Primary photoionization process

PRIMARY PHOTOIONIZATION PROCESSES

 $M + h\nu \rightarrow M^+ + e^-$

 $M + h\nu \rightarrow M^{+*} + e^{-}$

Photon = single particle operator
 2 or more particles involved in final state = e-e correlation
 Relaxation & e-e correlation in photoemission = satellite

The He satellite structure

$$$$

sudden approximation

$$\left|\Psi_{B}^{(N)}\right\rangle = \hat{A}(\varepsilon_{l};\left|\Psi_{B}^{(N-1)}\right\rangle)$$

$$\frac{d\sigma}{d\Omega dE_e} \propto \frac{1}{h\nu} \sum_{A,B} \left| \hat{\varepsilon} \bullet \left\langle \varepsilon_l \right| \vec{r}_j \left| \phi_j(\vec{r}_j, \sigma_j) \right\rangle \left\langle \Psi_B^{(N-1)} \left| \Psi_R^{(N-1)} \right\rangle \right|^2 \delta(E_e + E_B^{(N-1)} - E_A - h\nu)$$

frozen core approvimation

$$H_0^{'} = H_0$$

$$\frac{d\sigma}{d\Omega dE_e} \propto \frac{1}{h\nu} \sum_{A,B} \left| \hat{\varepsilon} \bullet \left\langle \varepsilon_l \right| \vec{r}_j \left| \phi_j(\vec{r}_j, \sigma_j) \right\rangle \right|^2 \delta(E_e + \varepsilon_j - h\nu)$$

Total photoemission cross section

Photoelectron current vs. photoelectron energy

Spin orbit splitting

Chemical shift

Chemical shift vs.electronegativity

PES spectrum of N₂

Diatomic molecule e levels

Core PE vibrational spectrum

Rotational structure HF

Angular distributions

Fixed in space molecules CO C 1s

Application to surfaces

Core hole relaxation

Energy, angular momentum, Dipole selections at each step

Auger decay

Auger chemical shift

Autoionizing decay

XIII SILS School G. Stefani

Ar Autoionization spectrum

46

Phys. Rev. A 63,032514

From central to periodic potential

Spectral Function in Interacting Solids

 $\Psi_{\rm Nf} = A \Psi^{\rm N-1}{}_{\rm f} \Phi_{\rm kf}$

 $Je \propto \Sigma_{if} |\mathbf{M}_{if}^{2}| \Sigma_{m} |\mathbf{m}_{im}|^{2} \times \delta(\mathbf{E}_{i}^{N} + \mathbf{hv} - \mathbf{E}_{m}^{N-1} - \mathbf{E}_{kin})$ $A(k, \varepsilon) = \Sigma_{m} (|\langle \Psi^{N-1}_{m} |\mathbf{c}_{k} | \Psi^{N}_{i} \rangle)|^{2} \times \delta(\varepsilon + \mathbf{E}_{m}^{N-1} - \mathbf{E}_{i}^{N})$ $Je(k, \omega) \propto \Sigma_{if} |\mathbf{M}_{if}|^{2} A(k, \mathbf{E}_{kin} - \mathbf{hv}) f(\mathbf{E}_{kin} - \mathbf{hv})$

For non interacting particles $A(\varepsilon, k) = \delta(\varepsilon - E_k)$ where $E_k = E_i^{N-1} - E_i^N$

 $A(\varepsilon, k) = 1/\pi \left| \Sigma''(k, \varepsilon) \right| / \left[\left| \varepsilon - \mathbf{E}_{k} - \Sigma'(k, \varepsilon) \right|^{2} + \left| \Sigma''(k, \varepsilon) \right|^{2} \right]$

The Three-Step model 1

The three-step model 2

1. Dipole transition

 $Je = \sum_{if} f(E_i) \left[1 - f(E_f)\right] M^2_{if} \times \delta[E_{kin} - (E_f - \Phi)] \delta(E_f - E_i - h\nu) \delta(k_i + G - k_f)$

2. Elastic transport

 $d(E_f, k) = \alpha \lambda / (1 + \alpha \lambda)$

3. Exit to vacuum

$$\Gamma(E_{f}, k_{ext}) = \begin{cases} 0 \text{ if } E_{f} < E_{F} + \Phi \\ 1/2 \sqrt{[1-(E_{F} + \Phi)/Ef]} \text{ if } E_{f} > E_{F} + \Phi \end{cases}$$

Total current

$$\begin{split} Je &\propto \Sigma_{if} \ f(E_i) \ [1\text{-}f(E_f)] \ M^2_{if} \times T(E_f, \, k_{ext}) \times d(E_f, \, k) \times \delta[E_{kin}\text{-}(E_f\text{-}\Phi)] \ \delta(E_f\text{-}E_i\text{-}h\nu) \times \delta \ (k_i\text{+}G\text{-}k_f) \times \delta \ (k_i^{\prime\prime}\text{+}G^{\prime\prime}\text{-}k_{ext}^{\prime\prime}) \end{split}$$

How to reconstruct the initial state

Valence band EDC and Cooper minimum

Valence Band EDCs of the clean Pt(997) surface (thin lines) and of Co-nanowires grown on Pt(997) (dots and thick lines), taken at different photon energies

Resonant photoemission

Valence Band EDCs of a CuPc thin-film taken at different photon energies (left panel) and X-ray Absorption Spectroscopy (XAS) from the same CuPc across the N Kedge (right panel).

2D electron gas spatially confined Cs/InAs(110)

XIII SILS School G. Stefani

Photoemission Spectroscopy

Core level XPS spectrum of graphite (C)

The singlet C 1s line is characterized by:

1) A specific binding energy which reflects the specific atomic species (C) in a specific chemical environment

2) A finite width reflecting the instrumental resolution, lifetime broadening and other many-body effects

Photoemission Spectroscopy: Chemical Shift (ΔE_b)

How the C 1s binding energy reflects differing chemical environme nt local to the excited C sites

FIG. 1. Intermediate-oxidation states at the SiO₂/Si(100) interface, identified by their Si 2p core-level shifts. The top curve represents the raw photoemission data for the Si $2p_{1/2,3/2}$ core levels. The bottom curve has the Si $2p_{1/2}$ line and the secondary electron background subtracted. All three intermediateoxidation states are seen. For a truncated bulk structure only Si²⁺ would be present since the Si(100) surface has two broken bonds per atom. Core Levels, chemical shift

The Si 2p line is characterized by the occurrence of 5 chemically distinct components which reflect different chemical states of the Si atoms at the interface

Surface core level shift vs. mean free path In 4d

Highresolution In-4d core-levels at freshly cleaved InAs(110), taken with He_{IIa} and He_{IIb} radiation; Voigt-profiled fit with surface (S, blu lines) and bulk (B, red lines) doublet components (left panel)

valence PE vibrational spectrum

pentacene: C22H14

benzene-thiol: C₆H₅-SH

Betti, Kanjilal and Mariani, J. Phys. Chem. A **111**, 12454 (2007)

Cooper Minimum Photoemission It is possible when one of the valence band orbital shows a Cooper minimum in the photoionization cross section

Cooper Minimum Photoemission A joint analysis of VB photoemission spectra taken at and off the Cooper minimum enables one to disentangle the differing site- and orbital-specific contributions

Analysis of the Si sp partial DOS at the Pt-Si(111) reacted interface (40 Å Pt-Si(111) at room temperature). The top panel displays the CM and the $h\nu = 80$ eV photoemission data, and a three-peak partial DOS that accounts for the Si hybridized 3sp charge at the interface; a gap is present in correspondence to the localized Pt5d states. The same three-peak partial DOS is then self-convoluted and compared to the integrated SiL_{2,3}VV lineshape. The correspondence of all peaks and relative intensities (a part of the known reduction of the Si 3s contribution) confirms the CM derivation of the Si sp partial DOS [159].

SILS SCHOOL U. STELAHI

Angular resolved photoemission

Dangling bonds Si(111)-(2x1)

Dangling-bond surface state dispersion at the Si(111)-(2x1) reconstructed surface along the ΓJ direction of the Surface Brillouin Zone (SBZ). One of the first experimental ARPES dangling-bond dispersion (left panel); recent high-resolution ARPES dangling-bond dispersion.

Physisorbed Xe c(2x2)/Cu(110)

Experimental band structure of the 5p levels of Xe physisorbed in an ordered $c(2\times 2)$ structure onto the Cu(110) surface. ARPES bands

2-nm thick pentacene film grown on Cu(119). ARPES selection of spectra taken at normal emission and varying the photon energy (left); highest-occupied molecular-orbital (HOMO) band dispersion along k_{\perp} (right).
ARPES graphite (HOPG)

Valence band of graphite (HOPG), stacking of the ARPES spectra as a function of polar angle (left) and experimental band structure (right).

Graphene band structure

Graphene band structure along GKM and zoom of the Dirac cone around the K point of the SBZ. ARPES data taken with high-resolution ARPES and a He discharge source

Band formation in graphene multilayers

• Formation of an electronic band, stepwise: from 1-layer (extreme left) to 4-layer (extreme right) graphene band structure along across the Dirac point.

K shell dispersion in graphene

Photoelectron Spectroscopy XIII SILS School G. Stefani Spectral function of the C 1s core-level in graphene as a function of the emission polar angle

Silvano Lizzit, et al.: Nature Physics 6, 345-349 (2010)

The End

References

*C.S. Fadley "Basic Concepts of X-ray Photoelectron Spectroscopy", in Electron Spectroscopy, theory, techniques and applications, Brundle and Baker Eds. (Pergamon Press, 1978) Vol. 11, ch.1

available at: <u>HTTP://WWW.PHYSICS.UCDAVIS.EDU/FADLEYGROUP</u>

*****S. Hufner "Photoelectron Spectroscopy, principle and applications" (Berlin Spronger 2003) 3rd Edition

*****V. Schmidt "Photoionization of atoms using synchrotron radiation" Report on Progress in Physics 55(1992)1482

*****C.M. Bertoni in "Synchrotron Radiation Basics, Methods and Applications (Springer Verlag Berlin Heidelberg 2015, pg. 145)

*****C. Mariani and G. Stefani in "Synchrotron Radiation Basics, Methods and Applications (Springer Verlag Berlin Heidelberg 2015, pg. 275)